Adversaries may attempt to get a listing of valid accounts, usernames, or email addresses on a system or within a compromised environment. This information can help adversaries determine which accounts exist, which can aid in follow-on behavior such as brute-forcing, spear-phishing attacks, or account takeovers (e.g., [Valid Accounts](https://app.tidalcyber.com/technique/a9b7eb2f-63e7-41bc-9d77-f7c4cede5406)).Adversaries may use several methods to enumerate accounts, including abuse of existing tools, built-in commands, and potential misconfigurations that leak account names and roles or permissions in the targeted environment.For examples, cloud environments typically provide easily accessible interfaces to obtain user lists. On hosts, adversaries can use default [PowerShell](https://app.tidalcyber.com/technique/6ca7838a-e8ad-43e8-9da6-15b640d1cbde) and other command line functionality to identify accounts. Information about email addresses and accounts may also be extracted by searching an infected system’s files.
Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.
An adversary may compress and/or encrypt data that is collected prior to exfiltration. Compressing the data can help to obfuscate the collected data and minimize the amount of data sent over the network. Encryption can be used to hide information that is being exfiltrated from detection or make exfiltration less conspicuous upon inspection by a defender.Both compression and encryption are done prior to exfiltration, and can be performed using a utility, 3rd party library, or custom method.
Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries. These interfaces and languages provide ways of interacting with computer systems and are a common feature across many different platforms. Most systems come with some built-in command-line interface and scripting capabilities, for example, macOS and Linux distributions include some flavor of [Unix Shell](https://app.tidalcyber.com/technique/3eafcd8b-0cb8-4d23-8785-3f80a3c897c7) while Windows installations include the [Windows Command Shell](https://app.tidalcyber.com/technique/be095bcc-4769-4010-b2db-3033d01efdbe) and [PowerShell](https://app.tidalcyber.com/technique/6ca7838a-e8ad-43e8-9da6-15b640d1cbde).There are also cross-platform interpreters such as [Python](https://app.tidalcyber.com/technique/68fed1c9-e060-4c4d-83d9-d8c817893d65), as well as those commonly associated with client applications such as [JavaScript](https://app.tidalcyber.com/technique/8a669da8-8894-4fb0-9124-c3c8418985cc) and [Visual Basic](https://app.tidalcyber.com/technique/0340ed34-6db2-4979-bf73-2c16855867b4).Adversaries may abuse these technologies in various ways as a means of executing arbitrary commands. Commands and scripts can be embedded in [Initial Access](https://app.tidalcyber.com/tactics/586a5b49-c566-4a57-beb4-e7c667f9c34c) payloads delivered to victims as lure documents or as secondary payloads downloaded from an existing C2. Adversaries may also execute commands through interactive terminals/shells, as well as utilize various [Remote Services](https://app.tidalcyber.com/technique/30ef3f13-5e9b-4712-9adf-f0da4ef157a1) in order to achieve remote Execution.[[Powershell Remote Commands](https://app.tidalcyber.com/references/24c526e1-7199-45ca-99b4-75e75c7041cd)][[Cisco IOS Software Integrity Assurance – Command History](https://app.tidalcyber.com/references/dbca06dd-1184-4d52-9ee8-b059e368033c)][[Remote Shell Execution in Python](https://app.tidalcyber.com/references/4ea54256-42f9-4b35-8f9e-e595ab9be9ce)]
Adversaries may acquire credentials from web browsers by reading files specific to the target browser.[[Talos Olympic Destroyer 2018](https://app.tidalcyber.com/references/25a2e179-7abd-4091-8af4-e9d2bf24ef11)] Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers.For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppData\Local\Google\Chrome\User Data\Default\Login Data and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData, which uses the victim’s cached logon credentials as the decryption key.[[Microsoft CryptUnprotectData April 2018](https://app.tidalcyber.com/references/258088ae-96c2-4520-8eb5-1a7e540a9a24)]Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc.[[Proofpoint Vega Credential Stealer May 2018](https://app.tidalcyber.com/references/c52fe62f-4df4-43b0-a126-2df07dc61fc0)][[FireEye HawkEye Malware July 2017](https://app.tidalcyber.com/references/7ad228a8-5450-45ec-86fc-ea038f7c6ef7)] Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the [Windows Credential Manager](https://app.tidalcyber.com/technique/9503955c-fa53-452a-b717-7e23bfb4df83).
Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials.[[GitHub Mimikittenz July 2016](https://app.tidalcyber.com/references/2e0a95b2-3f9a-4638-9bc5-ff1f3ac2af4b)]
After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary’s objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).
Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.It is possible to extract passwords from backups or saved virtual machines through [OS Credential Dumping](https://app.tidalcyber.com/technique/368f85f9-2b15-4732-80fe-087694eaf34d). [[CG 2014](https://app.tidalcyber.com/references/46836549-f7e9-45e1-8d89-4d25ba26dbd7)] Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. [[SRD GPP](https://app.tidalcyber.com/references/a15fff18-5d3f-4898-9e47-ec6ae7dda749)]In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files.[[Unit 42 Hildegard Malware](https://app.tidalcyber.com/references/0941cf0e-75d8-4c96-bc42-c99d809e75f9)] They may also be found as parameters to deployment commands in container logs.[[Unit 42 Unsecured Docker Daemons](https://app.tidalcyber.com/references/efcbbbdd-9af1-46c2-8538-3fd22f2b67d2)] In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.[[Specter Ops – Cloud Credential Storage](https://app.tidalcyber.com/references/95d6d1ce-ceba-48ee-88c4-0fb30058bd80)]
Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.Adversaries may do this using a [Command and Scripting Interpreter](https://app.tidalcyber.com/technique/a2184d53-63b1-4c40-81ed-da799080c36c), such as [cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8) as well as a [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907), which have functionality to interact with the file system to gather information.[[show_run_config_cmd_cisco](https://app.tidalcyber.com/references/5a68a45a-a53e-5d73-a82a-0cc951071aef)] Adversaries may also use [Automated Collection](https://app.tidalcyber.com/technique/107ad6c5-79b1-468c-9519-1578bee2ac49) on the local system.
Adversaries may use [Obfuscated Files or Information](https://app.tidalcyber.com/technique/046cc07e-8700-4536-9c5b-6ecb384f52b0) to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.One such example is the use of [certutil](https://app.tidalcyber.com/software/2fe21578-ee31-4ee8-b6ab-b5f76f97d043) to decode a remote access tool portable executable file that has been hidden inside a certificate file.[[Malwarebytes Targeted Attack against Saudi Arabia](https://app.tidalcyber.com/references/735647f9-9cd4-4a20-8812-4671a3358e46)] Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload.[[Carbon Black Obfuscation Sept 2016](https://app.tidalcyber.com/references/bed8ae68-9738-46fb-abc9-0004fa35636a)]Sometimes a user’s action may be required to open it for deobfuscation or decryption as part of [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872). The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. [[Volexity PowerDuke November 2016](https://app.tidalcyber.com/references/4026c055-6020-41bb-a4c8-54b308867023)]
Adversaries may gain access to a system through a user visiting a website over the normal course of browsing. With this technique, the user’s web browser is typically targeted for exploitation, but adversaries may also use compromised websites for non-exploitation behavior such as acquiring [Application Access Token](https://app.tidalcyber.com/technique/8592f37d-850a-43d1-86f2-cc981ad7d7dc).Multiple ways of delivering exploit code to a browser exist (i.e., [Drive-by Target](https://app.tidalcyber.com/technique/f2661f07-9027-4d19-9028-d07b7511f3d5)), including:* A legitimate website is compromised where adversaries have injected some form of malicious code such as JavaScript, iFrames, and cross-site scripting
* Script files served to a legitimate website from a publicly writeable cloud storage bucket are modified by an adversary
* Malicious ads are paid for and served through legitimate ad providers (i.e., [Malvertising](https://app.tidalcyber.com/technique/60ac24aa-ce63-5c1d-8126-db20a27d85be))
* Built-in web application interfaces are leveraged for the insertion of any other kind of object that can be used to display web content or contain a script that executes on the visiting client (e.g. forum posts, comments, and other user controllable web content).
Often the website used by an adversary is one visited by a specific community, such as government, a particular industry, or region, where the goal is to compromise a specific user or set of users based on a shared interest. This kind of targeted campaign is often referred to a strategic web compromise or watering hole attack. There are several known examples of this occurring.[[Shadowserver Strategic Web Compromise](https://app.tidalcyber.com/references/cf531866-ac3c-4078-b847-5b4af7eb161f)]
Typical drive-by compromise process:
1. A user visits a website that is used to host the adversary controlled content.
2. Scripts automatically execute, typically searching versions of the browser and plugins for a potentially vulnerable version.
* The user may be required to assist in this process by enabling scripting or active website components and ignoring warning dialog boxes.
3. Upon finding a vulnerable version, exploit code is delivered to the browser.
4. If exploitation is successful, then it will give the adversary code execution on the user’s system unless other protections are in place.
* In some cases a second visit to the website after the initial scan is required before exploit code is delivered.
Unlike [Exploit Public-Facing Application](https://app.tidalcyber.com/technique/4695fd01-43a5-4aa9-ab1a-501fc0dfbd6a), the focus of this technique is to exploit software on a client endpoint upon visiting a website. This will commonly give an adversary access to systems on the internal network instead of external systems that may be in a DMZ.
Adversaries may also use compromised websites to deliver a user to a malicious application designed to [Steal Application Access Token](https://app.tidalcyber.com/technique/f78f2c87-626a-468f-93a5-31b61be17727)s, like OAuth tokens, to gain access to protected applications and information. These malicious applications have been delivered through popups on legitimate websites.[[Volexity OceanLotus Nov 2017](https://app.tidalcyber.com/references/ed9f5545-377f-4a12-92e4-c0439cc5b037)]
Adversaries may employ a known encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Despite the use of a secure algorithm, these implementations may be vulnerable to reverse engineering if secret keys are encoded and/or generated within malware samples/configuration files.
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.Several types exist:### Browser-based Exploitation
Web browsers are a common target through [Drive-by Compromise](https://app.tidalcyber.com/technique/d4e46fe1-cc6d-4ef0-af72-a4e8dcd71381) and [Spearphishing Link](https://app.tidalcyber.com/technique/d08a9977-9fc2-46bb-84f9-dbb5187c426d). Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.
### Office Applications
Common office and productivity applications such as Microsoft Office are also targeted through [Phishing](https://app.tidalcyber.com/technique/d4a36624-50cb-43d3-95af-a2e10878a533). Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.
### Common Third-party Applications
Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as [ftp](https://app.tidalcyber.com/software/062deac9-8f05-44e2-b347-96b59ba166ca). Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. [Lateral Tool Transfer](https://app.tidalcyber.com/technique/3dea57fc-3131-408b-a1fd-ff2eea1d858f)).Files can also be transferred using various [Web Service](https://app.tidalcyber.com/technique/a729feee-8e21-444e-8eea-2ec595b09931)s as well as native or otherwise present tools on the victim system.[[PTSecurity Cobalt Dec 2016](https://app.tidalcyber.com/references/2de4d38f-c99d-4149-89e6-0349a4902aa2)]On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, [certutil](https://app.tidalcyber.com/software/2fe21578-ee31-4ee8-b6ab-b5f76f97d043), and [PowerShell](https://app.tidalcyber.com/technique/6ca7838a-e8ad-43e8-9da6-15b640d1cbde) commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`.[[t1105_lolbas](https://app.tidalcyber.com/references/80e649f5-6c74-4d66-a452-4f4cd51501da)]
Adversaries may use methods of capturing user input to obtain credentials or collect information. During normal system usage, users often provide credentials to various different locations, such as login pages/portals or system dialog boxes. Input capture mechanisms may be transparent to the user (e.g. [Credential API Hooking](https://app.tidalcyber.com/technique/28fd13d1-b555-47fa-9d47-caf6b1367ace)) or rely on deceiving the user into providing input into what they believe to be a genuine service (e.g. [Web Portal Capture](https://app.tidalcyber.com/technique/34674b83-86a7-4ad9-8b05-49b505aa5ef0)).
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes.[[NT API Windows](https://app.tidalcyber.com/references/306f7da7-caa2-40bf-a3db-e579c541eeb4)][[Linux Kernel API](https://app.tidalcyber.com/references/0a30d54e-187a-43e0-9725-3c80aa1c7619)] These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.Native API functions (such as NtCreateProcess) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries.[[OutFlank System Calls](https://app.tidalcyber.com/references/c4c3370a-2d6b-4ebd-961e-58d584066377)][[CyberBit System Calls](https://app.tidalcyber.com/references/c13cf528-2a7d-4a32-aee2-db5db2f30298)][[MDSec System Calls](https://app.tidalcyber.com/references/b461e226-1317-4ce4-a195-ba4c4957db99)] For example, functions such as the Windows API CreateProcess() or GNU fork() will allow programs and scripts to start other processes.[[Microsoft CreateProcess](https://app.tidalcyber.com/references/aa336e3a-464d-48ce-bebb-760b73764610)][[GNU Fork](https://app.tidalcyber.com/references/c46331cb-328a-46e3-89c4-e43fa345d6e8)] This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.[[Microsoft Win32](https://app.tidalcyber.com/references/585b9975-3cfb-4485-a9eb-5eea337ebd3c)][[LIBC](https://app.tidalcyber.com/references/a3fe6ea5-c443-473a-bb13-b4fd8f4923fd)][[GLIBC](https://app.tidalcyber.com/references/75a6a1bf-a5a7-419d-b290-6662aeddb7eb)]Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code.[[Microsoft NET](https://app.tidalcyber.com/references/b4727044-51bb-43b3-afdb-515bb4bb0f7e)][[Apple Core Services](https://app.tidalcyber.com/references/0ef05e47-1305-4715-a677-67f1b55b24a3)][[MACOS Cocoa](https://app.tidalcyber.com/references/6ada4c6a-23dc-4469-a3a1-1d3b4935db97)][[macOS Foundation](https://app.tidalcyber.com/references/ea194268-0a8f-4494-be09-ef5f679f68fe)]
Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to [Command and Scripting Interpreter](https://app.tidalcyber.com/technique/a2184d53-63b1-4c40-81ed-da799080c36c), the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system. While invoking API functions, adversaries may also attempt to bypass defensive tools (ex: unhooking monitored functions via [Disable or Modify Tools](https://app.tidalcyber.com/technique/9f290216-b2ab-47b5-b9ae-a94ae6d357c6)).
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.[[Wikipedia OSI](https://app.tidalcyber.com/references/d1080030-12c7-4223-92ab-fb764acf111d)] Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).ICMP communication between hosts is one example.[[Cisco Synful Knock Evolution](https://app.tidalcyber.com/references/29301297-8343-4f75-8096-7fe229812f75)] Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.[[Microsoft ICMP](https://app.tidalcyber.com/references/47612548-dad1-4bf3-aa6f-a53aefa06f6a)] However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
Adversaries may communicate using a protocol and port pairing that are typically not associated. For example, HTTPS over port 8088[[Symantec Elfin Mar 2019](https://app.tidalcyber.com/references/55671ede-f309-4924-a1b4-3d597517b27e)] or port 587[[Fortinet Agent Tesla April 2018](https://app.tidalcyber.com/references/86a65be7-0f70-4755-b526-a26b92eabaa2)] as opposed to the traditional port 443. Adversaries may make changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network data.Adversaries may also make changes to victim systems to abuse non-standard ports. For example, Registry keys and other configuration settings can be used to modify protocol and port pairings.[[change_rdp_port_conti](https://app.tidalcyber.com/references/c0deb077-6c26-52f1-9e7c-d1fb535a02a0)]
Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses.Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user’s action may be required to open and [Deobfuscate/Decode Files or Information](https://app.tidalcyber.com/technique/88c2fb46-877a-4005-8425-7639d0da1920) for [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872). The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. [[Volexity PowerDuke November 2016](https://app.tidalcyber.com/references/4026c055-6020-41bb-a4c8-54b308867023)] Adversaries may also use compressed or archived scripts, such as JavaScript.Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. [[Linux/Cdorked.A We Live Security Analysis](https://app.tidalcyber.com/references/f76fce2e-2884-4b50-a7d7-55f08b84099c)] Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. [[Carbon Black Obfuscation Sept 2016](https://app.tidalcyber.com/references/bed8ae68-9738-46fb-abc9-0004fa35636a)]
Adversaries may also abuse [Command Obfuscation](https://app.tidalcyber.com/technique/d8406198-626c-5659-945e-2b5105fcd0c9) to obscure commands executed from payloads or directly via [Command and Scripting Interpreter](https://app.tidalcyber.com/technique/a2184d53-63b1-4c40-81ed-da799080c36c). Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. [[FireEye Obfuscation June 2017](https://app.tidalcyber.com/references/6d1089b7-0efe-4961-8abc-22a882895377)][[FireEye Revoke-Obfuscation July 2017](https://app.tidalcyber.com/references/e03e9d19-18bb-4d28-8c96-8c1cef89a20b)][[PaloAlto EncodedCommand March 2017](https://app.tidalcyber.com/references/069ef9af-3402-4b13-8c60-b397b0b0bfd7)]
Adversaries may attempt to dump credentials to obtain account login and credential material, normally in the form of a hash or a clear text password, from the operating system and software. Credentials can then be used to perform [Lateral Movement](https://app.tidalcyber.com/tactics/50ba4930-7c8e-4ef9-bc36-70e7dae661eb) and access restricted information.Several of the tools mentioned in associated sub-techniques may be used by both adversaries and professional security testers. Additional custom tools likely exist as well.
Adversaries may send phishing messages to gain access to victim systems. All forms of phishing are electronically delivered social engineering. Phishing can be targeted, known as spearphishing. In spearphishing, a specific individual, company, or industry will be targeted by the adversary. More generally, adversaries can conduct non-targeted phishing, such as in mass malware spam campaigns.Adversaries may send victims emails containing malicious attachments or links, typically to execute malicious code on victim systems. Phishing may also be conducted via third-party services, like social media platforms. Phishing may also involve social engineering techniques, such as posing as a trusted source, as well as evasive techniques such as removing or manipulating emails or metadata/headers from compromised accounts being abused to send messages (e.g., [Email Hiding Rules](https://app.tidalcyber.com/technique/01505d46-8675-408d-881e-68f4d8743d47)).[[Microsoft OAuth Spam 2022](https://app.tidalcyber.com/references/086c06a0-3960-5fa8-b034-cef37a3aee90)][[Palo Alto Unit 42 VBA Infostealer 2014](https://app.tidalcyber.com/references/c3eccab6-b12b-513a-9a04-396f7b3dcf63)] Another way to accomplish this is by forging or spoofing[[Proofpoint-spoof](https://app.tidalcyber.com/references/fe9f7542-bbf0-5e34-b3a9-8596cc5aa754)] the identity of the sender which can be used to fool both the human recipient as well as automated security tools.[[cyberproof-double-bounce](https://app.tidalcyber.com/references/4406d688-c392-5244-b438-6995f38dfc61)]Victims may also receive phishing messages that instruct them to call a phone number where they are directed to visit a malicious URL, download malware,[[sygnia Luna Month](https://app.tidalcyber.com/references/3e1c2a64-8446-538d-a148-2de87991955a)][[CISA Remote Monitoring and Management Software](https://app.tidalcyber.com/references/1ee55a8c-9e9d-520a-a3d3-1d2da57e0265)] or install adversary-accessible remote management tools onto their computer (i.e., [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872)).[[Unit42 Luna Moth](https://app.tidalcyber.com/references/ec52bcc9-6a56-5b94-8534-23c8e7ce740f)]
Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.[[TechNet PowerShell](https://app.tidalcyber.com/references/20ec94d1-4a5c-43f5-bb65-f3ea965d2b6e)] Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.A number of PowerShell-based offensive testing tools are available, including [Empire](https://app.tidalcyber.com/software/fea655ac-558f-4dd0-867f-9a5553626207), [PowerSploit](https://app.tidalcyber.com/software/82fad10d-c921-4a87-a533-49def83d002b), [PoshC2](https://app.tidalcyber.com/software/a3a03835-79bf-4558-8e80-7983aeb842fb), and PSAttack.[[Github PSAttack](https://app.tidalcyber.com/references/929e37ed-c230-4517-a2ef-b7896bd3e4a2)]
PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell’s underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).[[Sixdub PowerPick Jan 2016](https://app.tidalcyber.com/references/52190592-5809-4e7b-a19c-fc87b245025c)][[SilentBreak Offensive PS Dec 2015](https://app.tidalcyber.com/references/8eec1af3-c65e-4522-8087-73122ac6c281)][[Microsoft PSfromCsharp APR 2014](https://app.tidalcyber.com/references/83e346d5-1894-4c46-98eb-88a61ce7f003)]
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Adversaries may use the information from [Process Discovery](https://app.tidalcyber.com/technique/710ae610-0556-44e5-9de9-8be6159a23dd) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.In Windows environments, adversaries could obtain details on running processes using the [Tasklist](https://app.tidalcyber.com/software/abae8f19-9497-4a71-82b6-ae6edd26ad98) utility via [cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8) or Get-Process via [PowerShell](https://app.tidalcyber.com/technique/6ca7838a-e8ad-43e8-9da6-15b640d1cbde). Information about processes can also be extracted from the output of [Native API](https://app.tidalcyber.com/technique/1120f5ec-ef1b-4596-8d8b-a3979a766560) calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via /proc.On network devices, [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) commands such as `show processes` can be used to display current running processes.[[US-CERT-TA18-106A](https://app.tidalcyber.com/references/1fe55557-94af-4697-a675-884701f70f2a)][[show_processes_cisco_cmd](https://app.tidalcyber.com/references/944e529b-5e8a-54a1-b205-71dcb7dd304f)]
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.
Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software.The Registry contains a significant amount of information about the operating system, configuration, software, and security.[[Wikipedia Windows Registry](https://app.tidalcyber.com/references/656f0ffd-33e0-40ef-bdf7-70758f855f18)] Information can easily be queried using the [Reg](https://app.tidalcyber.com/software/d796615c-fa3d-4afd-817a-1a3db8c73532) utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from [Query Registry](https://app.tidalcyber.com/technique/58722f84-b119-45a8-8e29-0065688015ee) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.[[Microsoft Run Key](https://app.tidalcyber.com/references/0d633a50-4afd-4479-898e-1a785f5637da)] These programs will be executed under the context of the user and will have the account’s associated permissions level.Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:\Users\\[Username]\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup. The startup folder path for all users is C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp.The following run keys are created by default on Windows systems:
Run keys may exist under multiple hives.[[Microsoft Wow6432Node 2018](https://app.tidalcyber.com/references/cbc14af8-f0d9-46c9-ae2c-d93d706ac84e)][[Malwarebytes Wow6432Node 2016](https://app.tidalcyber.com/references/d4eba34c-d76b-45b4-bcaf-0f13459daaad)] The HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.[[Microsoft Run Key](https://app.tidalcyber.com/references/0d633a50-4afd-4479-898e-1a785f5637da)] For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx\0001\Depend /v 1 /d "C:\temp\evil[.]dll"[[Oddvar Moe RunOnceEx Mar 2018](https://app.tidalcyber.com/references/36d52213-8d9f-4642-892b-40460d5631d7)]
The following Registry keys can be used to set startup folder items for persistence:
The Winlogon key controls actions that occur when a user logs on to a computer running Windows 7. Most of these actions are under the control of the operating system, but you can also add custom actions here. The HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit and HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell subkeys can automatically launch programs.
Programs listed in the load value of the registry key HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows run when any user logs on.
By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use [Masquerading](https://app.tidalcyber.com/technique/a0adacc1-8d2a-4e0b-92c1-3766264df4fd) to make the Registry entries look as if they are associated with legitimate programs.
An adversary may use legitimate desktop support and remote access software, such as Team Viewer, AnyDesk, Go2Assist, LogMein, AmmyyAdmin, etc, to establish an interactive command and control channel to target systems within networks. These services are commonly used as legitimate technical support software, and may be allowed by application control within a target environment. Remote access tools like VNC, Ammyy, and Teamviewer are used frequently when compared with other legitimate software commonly used by adversaries.[[Symantec Living off the Land](https://app.tidalcyber.com/references/4bad4659-f501-4eb6-b3ca-0359e3ba824e)]Remote access tools may be installed and used post-compromise as alternate communications channel for redundant access or as a way to establish an interactive remote desktop session with the target system. They may also be used as a component of malware to establish a reverse connection or back-connect to a service or adversary controlled system. Installation of many remote access tools may also include persistence (ex: the tool’s installation routine creates a [Windows Service](https://app.tidalcyber.com/technique/31c6dd3c-3eb2-46a9-ab85-9e8e145810a1)).Admin tools such as TeamViewer have been used by several groups targeting institutions in countries of interest to the Russian state and criminal campaigns.[[CrowdStrike 2015 Global Threat Report](https://app.tidalcyber.com/references/50d467da-286b-45f3-8d5a-e9d8632f7bf1)][[CrySyS Blog TeamSpy](https://app.tidalcyber.com/references/f21ea3e2-7983-44d2-b78f-80d84bbc4f52)]
Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as [Ping](https://app.tidalcyber.com/software/4ea12106-c0a1-4546-bb64-a1675d9f5dc7) or net view using [Net](https://app.tidalcyber.com/software/c9b8522f-126d-40ff-b44e-1f46098bd8cc).Adversaries may also analyze data from local host files (ex: C:\Windows\System32\Drivers\etc\hosts or /etc/hosts) or other passive means (such as local [Arp](https://app.tidalcyber.com/software/45b51950-6190-4572-b1a2-7c69d865251e) cache entries) in order to discover the presence of remote systems in an environment.Adversaries may also target discovery of network infrastructure as well as leverage [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors, show arp).[[US-CERT-TA18-106A](https://app.tidalcyber.com/references/1fe55557-94af-4697-a675-884701f70f2a)][[CISA AR21-126A FIVEHANDS May 2021](https://app.tidalcyber.com/references/f98604dd-2881-4024-8e43-6f5f48c6c9fa)]
Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.[[CopyFromScreen .NET](https://app.tidalcyber.com/references/b9733af4-ffb4-416e-884e-d51649aecbce)][[Antiquated Mac Malware](https://app.tidalcyber.com/references/165edb01-2681-45a3-b76b-4eb7dee5dab9)]
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from [Software Discovery](https://app.tidalcyber.com/technique/e9bff6ff-3142-4910-8f67-19b868912602) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to [Exploitation for Privilege Escalation](https://app.tidalcyber.com/technique/9cc715d7-9969-485f-87a2-c9f7ed3cc44c).
Adversaries may perform software packing or virtual machine software protection to conceal their code. Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory. Virtual machine software protection translates an executable’s original code into a special format that only a special virtual machine can run. A virtual machine is then called to run this code.[[ESET FinFisher Jan 2018](https://app.tidalcyber.com/references/be169308-19e8-4ee9-8ff6-e08eb9291ef8)]Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available, but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses.[[Awesome Executable Packing](https://app.tidalcyber.com/references/565bf600-5657-479b-9678-803e991c88a5)]
Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872) to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.
An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.[[Pass The Cookie](https://app.tidalcyber.com/references/dc67930f-5c7b-41be-97e9-d8f4a55e6019)]There are several examples of malware targeting cookies from web browsers on the local system.[[Kaspersky TajMahal April 2019](https://app.tidalcyber.com/references/1ed20522-52ae-4d0c-b42e-c680490958ac)][[Unit 42 Mac Crypto Cookies January 2019](https://app.tidalcyber.com/references/0a88e730-8ed2-4983-8f11-2cb2e4abfe3e)] There are also open source frameworks such as Evilginx 2 and Muraena that can gather session cookies through a malicious proxy (ex: [Adversary-in-the-Middle](https://app.tidalcyber.com/technique/d98dbf30-c454-42ff-a9f3-2cd3319cc0d9)) that can be set up by an adversary and used in phishing campaigns.[[Github evilginx2](https://app.tidalcyber.com/references/322e5d90-5095-47ea-b0e2-e7e5fb45fcca)][[GitHub Mauraena](https://app.tidalcyber.com/references/578ecf62-b546-4f52-9d50-92557edf2dd4)]
After an adversary acquires a valid cookie, they can then perform a [Web Session Cookie](https://app.tidalcyber.com/technique/d36a5323-e249-44e8-9c8b-5cc9c023a5e1) technique to login to the corresponding web application.
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from [System Information Discovery](https://app.tidalcyber.com/technique/a2961a00-450e-45a5-b293-f699d9f3b4ea) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.Tools such as [Systeminfo](https://app.tidalcyber.com/software/cecea681-a753-47b5-9d77-c10a5b4403ab) can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) on network devices to gather detailed system information (e.g. show version).[[US-CERT-TA18-106A](https://app.tidalcyber.com/references/1fe55557-94af-4697-a675-884701f70f2a)] [System Information Discovery](https://app.tidalcyber.com/technique/a2961a00-450e-45a5-b293-f699d9f3b4ea) combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.[[OSX.FairyTale](https://app.tidalcyber.com/references/27f8ad45-53d2-48ba-b549-f7674cf9c2e7)][[20 macOS Common Tools and Techniques](https://app.tidalcyber.com/references/3ee99ff4-daf4-4776-9d94-f7cf193c2b0c)]Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.[[Amazon Describe Instance](https://app.tidalcyber.com/references/c0b6a8a4-0d94-414d-b5ab-cf5485240dee)][[Google Instances Resource](https://app.tidalcyber.com/references/9733447c-072f-4da8-9cc7-0a0ce6a3b820)][[Microsoft Virutal Machine API](https://app.tidalcyber.com/references/f565c237-07c5-4e9e-9879-513627517109)]
Adversaries may gather information in an attempt to calculate the geographical location of a victim host. Adversaries may use the information from [System Location Discovery](https://app.tidalcyber.com/technique/90e6a093-3e87-4d74-8b68-38c7d7e5e93c) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.Adversaries may attempt to infer the location of a system using various system checks, such as time zone, keyboard layout, and/or language settings.[[FBI Ragnar Locker 2020](https://app.tidalcyber.com/references/38b9b8a3-6fd3-4650-9192-14ee3f302705)][[Sophos Geolocation 2016](https://app.tidalcyber.com/references/a3b7540d-20cc-4d94-8321-9fd730486f8c)][[Bleepingcomputer RAT malware 2020](https://app.tidalcyber.com/references/a587ea99-a951-4aa8-a3cf-a4822ae97490)] Windows API functions such as GetLocaleInfoW can also be used to determine the locale of the host.[[FBI Ragnar Locker 2020](https://app.tidalcyber.com/references/38b9b8a3-6fd3-4650-9192-14ee3f302705)] In cloud environments, an instance’s availability zone may also be discovered by accessing the instance metadata service from the instance.[[AWS Instance Identity Documents](https://app.tidalcyber.com/references/efff0080-59fc-4ba7-ac91-771358f68405)][[Microsoft Azure Instance Metadata 2021](https://app.tidalcyber.com/references/66e93b75-0067-4cdb-b695-8f8109ef26e0)]Adversaries may also attempt to infer the location of a victim host using IP addressing, such as via online geolocation IP-lookup services.[[Securelist Trasparent Tribe 2020](https://app.tidalcyber.com/references/0db470b1-ab22-4b67-a858-472e4de7c6f0)][[Sophos Geolocation 2016](https://app.tidalcyber.com/references/a3b7540d-20cc-4d94-8321-9fd730486f8c)]
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include [Arp](https://app.tidalcyber.com/software/45b51950-6190-4572-b1a2-7c69d865251e), [ipconfig](https://app.tidalcyber.com/software/4f519002-0576-4f8e-8add-73ebac9a86e6)/[ifconfig](https://app.tidalcyber.com/software/93ab16d1-625e-4b1c-bb28-28974c269c47), [nbtstat](https://app.tidalcyber.com/software/81c2fc9b-8c2c-40f6-a327-dcdd64b70a7e), and [route](https://app.tidalcyber.com/software/3b755518-9085-474e-8bc4-4f9344d9c8af).Adversaries may also leverage a [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface).[[US-CERT-TA18-106A](https://app.tidalcyber.com/references/1fe55557-94af-4697-a675-884701f70f2a)][[Mandiant APT41 Global Intrusion ](https://app.tidalcyber.com/references/9b75a38e-e5c7-43c8-a7fb-c7f212e00497)]Adversaries may use the information from [System Network Configuration Discovery](https://app.tidalcyber.com/technique/adb6b8c1-2bdb-42b9-95da-5ce07e8796f7) during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using [OS Credential Dumping](https://app.tidalcyber.com/technique/368f85f9-2b15-4732-80fe-087694eaf34d). The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from [System Owner/User Discovery](https://app.tidalcyber.com/technique/86e6f1f0-290b-4971-b50e-80e98a0a768b) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information.On network devices, [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) commands such as `show users` and `show ssh` can be used to display users currently logged into the device.[[show_ssh_users_cmd_cisco](https://app.tidalcyber.com/references/11d34884-4559-57ad-8910-54e517c6493e)][[US-CERT TA18-106A Network Infrastructure Devices 2018](https://app.tidalcyber.com/references/8fdf280d-680f-4b8f-8fb9-6b3118ec3983)]
Adversaries may try to gather information about registered local system services. Adversaries may obtain information about services using tools as well as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and net start.Adversaries may use the information from [System Service Discovery](https://app.tidalcyber.com/technique/e0a347e2-2ac5-458b-ab0f-18d81b6d6055) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
An adversary may gather the system time and/or time zone from a local or remote system. The system time is set and stored by the Windows Time Service within a domain to maintain time synchronization between systems and services in an enterprise network. [[MSDN System Time](https://app.tidalcyber.com/references/5e15e03b-be8b-4f3d-a3ae-0df7a4ecfbec)][[Technet Windows Time Service](https://app.tidalcyber.com/references/0d908e07-abc1-40fc-b147-9b9fd483b262)]System time information may be gathered in a number of ways, such as with [Net](https://app.tidalcyber.com/software/c9b8522f-126d-40ff-b44e-1f46098bd8cc) on Windows by performing net time \\hostname to gather the system time on a remote system. The victim’s time zone may also be inferred from the current system time or gathered by using w32tm /tz.[[Technet Windows Time Service](https://app.tidalcyber.com/references/0d908e07-abc1-40fc-b147-9b9fd483b262)]On network devices, [Network Device CLI](https://app.tidalcyber.com/technique/284bfbb3-99f0-4c3d-bc1f-ab74065b7907) commands such as `show clock detail` can be used to see the current time configuration.[[show_clock_detail_cisco_cmd](https://app.tidalcyber.com/references/a2215813-31b0-5624-92d8-479e7bd1a30b)]
This information could be useful for performing other techniques, such as executing a file with a [Scheduled Task/Job](https://app.tidalcyber.com/technique/0baf02af-ffaa-403f-9f0d-da51f463a1d8)[[RSA EU12 They’re Inside](https://app.tidalcyber.com/references/8330ab88-9c73-4332-97d6-c1fb95b1a155)], or to discover locality information based on time zone to assist in victim targeting (i.e. [System Location Discovery](https://app.tidalcyber.com/technique/90e6a093-3e87-4d74-8b68-38c7d7e5e93c)). Adversaries may also use knowledge of system time as part of a time bomb, or delaying execution until a specified date/time.[[AnyRun TimeBomb](https://app.tidalcyber.com/references/cd369bf9-80a8-426f-a0aa-c9745b40696c)]
Adversaries may search compromised systems to find and obtain insecurely stored credentials. These credentials can be stored and/or misplaced in many locations on a system, including plaintext files (e.g. [Bash History](https://app.tidalcyber.com/technique/065d1cca-8ca5-4f8b-a333-2340706f589e)), operating system or application-specific repositories (e.g. [Credentials in Registry](https://app.tidalcyber.com/technique/cdac2469-52ca-42a8-aefe-0321a7e3d658)), or other specialized files/artifacts (e.g. [Private Keys](https://app.tidalcyber.com/technique/e493bf4a-0eba-4e60-a7a6-c699084dc98a)).
An adversary may rely upon specific actions by a user in order to gain execution. Users may be subjected to social engineering to get them to execute malicious code by, for example, opening a malicious document file or link. These user actions will typically be observed as follow-on behavior from forms of [Phishing](https://app.tidalcyber.com/technique/d4a36624-50cb-43d3-95af-a2e10878a533).While [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872) frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after [Internal Spearphishing](https://app.tidalcyber.com/technique/4f4ea659-7653-4bfd-a525-b2af32c5899b).Adversaries may also deceive users into performing actions such as enabling [Remote Access Software](https://app.tidalcyber.com/technique/acf828f4-7e7e-43e1-bf15-ceab42021430), allowing direct control of the system to the adversary, or downloading and executing malware for [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872). For example, tech support scams can be facilitated through [Phishing](https://app.tidalcyber.com/technique/d4a36624-50cb-43d3-95af-a2e10878a533), vishing, or various forms of user interaction. Adversaries can use a combination of these methods, such as spoofing and promoting toll-free numbers or call centers that are used to direct victims to malicious websites, to deliver and execute payloads containing malware or [Remote Access Software](https://app.tidalcyber.com/technique/acf828f4-7e7e-43e1-bf15-ceab42021430).[[Telephone Attack Delivery](https://app.tidalcyber.com/references/9670da7b-0600-4072-9ecc-65a918b89ac5)]