Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.
Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to [DLL Search Order Hijacking](https://app.tidalcyber.com/technique/69cd62f8-b729-4a05-8351-5bb961f7c6d6), side-loading involves hijacking which DLL a program loads. But rather than just planting the DLL within the search order of a program then waiting for the victim application to be invoked, adversaries may directly side-load their payloads by planting then invoking a legitimate application that executes their payload(s).Side-loading takes advantage of the DLL search order used by the loader by positioning both the victim application and malicious payload(s) alongside each other. Adversaries likely use side-loading as a means of masking actions they perform under a legitimate, trusted, and potentially elevated system or software process. Benign executables used to side-load payloads may not be flagged during delivery and/or execution. Adversary payloads may also be encrypted/packed or otherwise obfuscated until loaded into the memory of the trusted process.[[FireEye DLL Side-Loading](https://app.tidalcyber.com/references/9d58bcbb-5b96-4e12-8ff2-e0b084c3eb8c)]
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
Adversaries may attempt to dump credentials to obtain account login and credential material, normally in the form of a hash or a clear text password, from the operating system and software. Credentials can then be used to perform [Lateral Movement](https://app.tidalcyber.com/tactics/50ba4930-7c8e-4ef9-bc36-70e7dae661eb) and access restricted information.Several of the tools mentioned in associated sub-techniques may be used by both adversaries and professional security testers. Additional custom tools likely exist as well.
Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon [User Execution](https://app.tidalcyber.com/technique/b84435ab-2ff4-4b6f-ba71-b4b815474872) to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.
Adversaries may abuse the Windows command shell for execution. The Windows command shell ([cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8)) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via [Remote Services](https://app.tidalcyber.com/technique/30ef3f13-5e9b-4712-9adf-f0da4ef157a1) such as [SSH](https://app.tidalcyber.com/technique/7620ba3a-7877-4f87-90e3-588163ac0474).[[SSH in Windows](https://app.tidalcyber.com/references/3006af23-b802-400f-841d-7eea7d748d28)]Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems.Adversaries may leverage [cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8) to execute various commands and payloads. Common uses include [cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8) to execute a single command, or abusing [cmd](https://app.tidalcyber.com/software/98d89476-63ec-4baf-b2b3-86c52170f5d8) interactively with input and output forwarded over a command and control channel.